EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y
ISSUE: 1.0

. REVISION: 1.0

ESAF COdIng RU |eS DATE: 4th October 2004
PAGE 1/12

Euso Simulation and Analysis Framework

Coding Rules

Sep 15, 2004 - Version 1.0
Doc. Ref. EUSO-SDA-REP-XXX-Y

A. Thea!

Istituto Nazionale di Fisica Nucleare & Universita di Genova
Italy

Abstract

The aim of this guide is to give an overview of the ESAF classes features and
their integration in ESAF and ROOT. The conventions and the rules to include
a new class in the framework taking advantage of the ESAF facilities will be

described.

le-mail: Alessandro.Thea®@ge.infn.it

EUSO-SDA Subsystem DOC. REFERENCE: BUSO-SDA-REP-XXX-Y

ISSUE: 1.0

ESAF COding Rules bl i 4th October 2004

PAGE 2/12

Contents

1 Introduction 3
2 Text formatting 3
2.1 Configuring VIM 0 3
2.2 Configuring Emacs 0o 3
3 Coding Conventions 3
4 EsafConfigClass and configuration files 4
5 ROOT integration 4
6 Logging and Message handling in ESAF 6
6.1 Messenger L 6
6.2 TObject and ROOT message system 6
7 Classes coding conventions 6
7.1 Files 6
8 Comments 7
8.1 Headerfiles. 7
811 Classtitle o 8
8.1.2 Datamembers 8
8.2 Sourcefiles 9
8.2.1 Class Documentation 9
8.2.2 Member fuctions 10
Appendix 10
A Acknowledgements 11
B References 11
C CreateNewClass script 11
D CreateNewlLib script 12

E“sn EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y
ISSUE: 1.0

. REVISION: 1.0
3 ESAF COdIng Ru |es DATE: 4th October 2004
PAGE 3/12

1 Introduction

This guide is miles away from to be complete and exhaustive. But ESAF develop-
ers team is getting bigger and bigger and I hope that an even small reference guide
dedicated to the developers may be useful to avoid painful debugging and long and
sometimes “hot” mail exchanges.

This first version of this guide would like to cover several aspects related with the
classes ESAF is founded on.

2 Text formatting

Indentation: 4 spaces, no tabs.

2.1 Configuring VIM

Add to your /.vimrc the following lines:

set shiftwidth=4
set softtabstop=4
set tabstop=4
set expandtab

to tell VIm to use the correct indentation.

2.2 Configuring Emacs

Add to your /.emacsrc the following line:

(setq c-basic-offset 4)

3 Coding Conventions

ESAF follows ROOT /Taligent name convention. Due to historical reasons there some
exceptions exists. Class names don’t begin with a T and a restricted number of them
begins with E.

The following paragraph is part of Addison-Wesley’s Taligent Guide [4].

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y
ISSUE: 1.0

% . REVISION: 1.0
E ESAF COdmg Rules DATE: 4th October 2004
PAGE 4/12

Select C++ identifiers (including types, functions, and classes) carefully.
When a programmer sees a name, it might be out of context; choose names
to enhance readability and comprehension. A name that seems cute or easy
to type can cause trouble to someone trying to decipher code. Remember,
code is read many more times than it is written; err on the side of long,
readable names. Internal code names should not appear anywhere in the
interfaces to the system. Even inside your implementation, it’s better to
use the prosaic form if there is one.

To make the scope of names explicit, Taligent uses the conventions of table
1.

In any name that contains more than one word, the first word follows the
convention for the type of the name, and subsequent words follow with
the first letter of each word capitalized, such as TTextBase. Do not use
underscores except for #define symbols.

4 EsafConfigClass and configuration-files

Many ESAF Classes are initialized via config files contained in config/ directory.
The interface between .cfg files and classes is handled by the Config singleton and
EusoConfigurable objects.

All the classes inheriting from EusoConfigurable can access the parameters stored
in the .cfg files using EusoConfigurable: :Conf () interface. Conf () returns a pointer
to the correct EusoConfigFileParser object stored in Config. Each class must be
properly set to get the correct parser from Conf ().

This is done adding the following line in the class definition:

EsafConfigClass(Optics, ParamOpticalSystem)

EsafConfigClass() macro has two arguments, the first is ClassType and the
second ClassName. ClassType refers to the config/ subdirectory where the class
config file is, while ClassName is the file name. In ESAF each class has its own config
file.

A detailed description of ESAF configuration system can be found in [1]

5 ROOT integration

ESAF is deeply connected with ROOT. ROOT classes are used to provide the user
with a user friendly Graphical User Interface (GUI), an efficient I/O system and the

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y
ISSUE: 1.0

. REVISION: 1.0

ESAF COdlng Ru |eS DATE: 4th October 2004
PAGE 5/12

Identifier Convention Example
Types Begin with a capital letter Boolean
Enumeration types Begin with E EFreezeLevel

Members

Begin with f for field1;

functions begin with a capital
letter

Begin with g; applies to static
variables in functions and
global variables (excluding
static data members of a class)
Begin with fg; includes class
globals

Begin with a word whose initial
letter is lowercase; local
automatic variables only, treat
statics like globals

fViewList, DrawSelf()
Static variables gDeviceList
Static data members

TView::fgTokenClient

Locals and parameters seed, port, theCurrentArea

Constants Begin with k; including names kMenuCommand
of enumeration constants and
constant statics
Acronyms All uppercase TNBPName,
not TNbpName
Template arguments Begin with A AType

Getters and setters Begin with Set..., Get..., or Is...
(Boolean); use sparingly
Begin with Create..., Copy...,

Adopt..., or Orphan...;

SetLast(), GetNext(), IsDone()

Allocator and adopters CreateName()

Table 1: Taligent conventions used in ESAF

automatic documentation generation. Integration of new classes in ROOT is done with
ClassDef, ClassImp macros and rootcint dictionary generator. The ClassDef and
ClassImp macros are necessary to link classes to the dictionary generated by CINT.
rootcint process class headers and parsing the class structure, builds the streamers
needed for I/O. LinkDef .hh file in include directories tells rootcint for which classes
to generate the method interface stubs. .
In the class header files the following line must be added to class header files:

ClassDef (ClassName,ClassVersionID)

The ClassVersionID is used by the ROOT I/O system. This feature is basically
reserved to the classes in packages/common/root/ which are used to store data in the
rootfile, like EPhoton, must have ClassVersionID >= 1. Elsewhere standard ESAF
classes do not need to be written on file therefore ClassVersionID must be equal to

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y

ISSUE: 1.0
- REVISION: 1.0
K ESAF Coding Rules DATE: 4th October 2004
PAGE 6/12

NQOTE: The ClassDef macro must be the last item before the closing }; in a class
definition. It contains its own private and public tags so it can be added to either a
private or public part of a class definition.

Similarly, in the source file must be added:

ClassImp(ClassName)

which provides the interface needed to generate the documentation.
ClassDef, ClassImp, ROOT I/O and RTTI systems are explained extensively in
the ROOT User’s Guide [3].

6 Logging and Message handling in ESAF
6.1 Messenger

TO_DO

6.2 TObject and ROOT message system

7 Classes coding conventions

7.1 Files

All files belonging to the ESAF CVS are required to have basic information stored in
a standard header like the following:

// $Id: ClassFormat.tex,v 1.3 2004/09/29 10:07:43 thea Exp $
// Author: A.Thea 2004/07/19

/ot ok stk s ok o ok ok ks sk sk ok ke ok sk ok o ok sk sk sk ok ke sk s o e ks sk s o ok sk sk e s ok sk sk s s ok ks s s e ok sk sk sk ok ksl o e ok ks o e ok ke ok o ke ok ok
* ESAF: Euso Simulation and Analysis Framework

Id: ParamOpticalSystem
Package: Optics
Coordinator: Alessandro.Thea

* X X X x

*
***/

* % X X X

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y

EUSO ISSUE: 1.0
h - REVISION: 1.0
ESAF Coding Rules DATE: 4th October 2004

PAGE 7/12

$Id: ClassFormat.tex,v 1.3 2004/09/29 10:07:43 thea Exp $: CVS file infor-
mations.

Author: the name of the creator and the creation date. It is read by the automatic
documentation system.

Id: string that identifies the file (i.e. the class name or the namespace name).
Package: the name of the package it belongs to.

Coordinator: the package coordinator identifier, < FirstName > . < LastName >.

The ESAF header must be present in header, source and config files (.hh,.cc,.cfg).

8 Comments

In a projects as big as ESAF, commenting the code is essential. Moreover, comments
written in the right format can be intercepted and included them in the documentation.
In ESAF we use this approach so each developer has to keep up-to-date only the code
documentation and the automatic documentation system takes care of producing the

package documentation.
For each class three different type of comments are required:

1. A header inside the header file,
2. Class and class’ parameter description in the source file,

3. Class’ member functions explanation in the source file.

8.1 Header files
A typical ESAF class looks like:

IIT117777 00077777 007777777777777107777777777777777777777177771117777777177771717777

// //
// ParamOpticalSystem //
// //
// Parameterized optical system //
// //

I1L177777777777777777777717777777777777777777777777777717777711117777711777117717

class ParamOpticalSystem : public OpticalSystem {
public:
ParamOpticalSystem() ;

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y

ISSUE: 1.0

- REVISION: 1.0

ESAF Coding Rules DATE: 4th October 2004
PAGE 8/12

(...continued)
virtual “ParamOpticalSystem();

private:
enum EPsfType { kPointLike, kGaussian };

void Init();

Double_t *fIntegral; // fNbins+1 size array containing the
// line integral of the fs profile
Int_t fNbins; // size of flIntegral

EsafConfigClass(Optics,ParamOpticalSystem)

ClassDef (Param0OpticalSystem,1)

For each class or namespace, two comments are required: class/namespace title
before its declaration, and class data members description.

8.1.1 Class title

Just before the class declaration there is a brief description of the class (few words).
In case of a single class header may be redundant but becomes useful when several
classes are defined in the same file.

II7777777777777777777777717777777777777717777777777777177777117777777117771177177

// //
// ParamOpticalSystem //
// //
// Parameterized optical system //
// //

II117777777777777777777117777777110707777777777717777777177777111177777177771177117

8.1.2/ Data members

The descriptions must follow data member declaration, inline or in the following line.

Sometime special keywords can be found after //. These information are used
by the dictionary generator rootcint Special comments (ClassVersionID != 0)like
EShower, EAtmosphere and EDetector.

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y

ISSUE: 1.0
- REVISION: 1.0

ESAF Coding Rules DATE: 4th October 2004
PAGE 9/12

Double_t *fIntegral;
// fNbins+1 size array containing line integral of the fs profile

Int_t fNbins; // size of fIntegral

8.2 Source files
8.2.1 Class Documentation

The information stored in the class documentation block is twofold. First, features
and proposes are explained in detail. Then, if class uses ESAF configuration system,
the list of the config file parameters follows.

// Parameterized Optical System
//
//
// Parameterized optical system. This Optical System is done to reproduce the
// behaviour of an optics design through a set of parameters.

// The main pourpose is to simulate and 0S with a given Triggering efficacy
// without the need of the full MC simulation.

//

// ParamOpticalSystem behaves as an ideal optical system with a given focal
// surface.

1/

// The position an incoming photon hits the focal surface is calculated

// accordingly the relation

//

// d = (Dmax/ThetaMax)*theta
//

// where:

// d is the distance of the impact point on the FS from the center of the FS
// calculated along the FS.

1/

// Dmax is the maximum distancs.

1/

// ~theta is the angle between the incoming photon direction and the optical
// axis.

//

// ThetaMax is the maximum value of theta accepted by the optics.

/7

// Config file parameters:

1/
//
// fPos.Z [mm] : Z coordinate of the bottom base of the OpticalSystem in

EUSO-SDA Subsystem

ESAF Coding Rules

DOC. REFERENCE:

ISSUE:
REVISION:
DATE:
PAGE

EUSO-SDA-REP-XXX-Y
1.0

1.0

4th October 2004

10/12

//
//
//
//
//
//
//
//

Detector reference System.

fPsfType [option]: type of PSF to use.

- options
point: No spread.

(...continued)

gauss: Gaussian psf. RMS and angles of incidence listed in

fGaussSpread.filename

8.2

Note that EVERYTHING until the first non-commented line is considered as a
valid class description block.
Parameters can be numbers or strings. Unit of measure must be specified when the
parameter is not pure numbers, otherwise the [string] keyword, in case of strings.

In the latter case all the valid options must be listed after the parameter description.

.2 Member fuctions

A member function description block starts immediately after ’{’ and looks like this:

Double_t ParamOpticalSystem::FocalSurfProfile(Double_t r) const {

//
// Profile of the focal surface Z(r)
//
if (r <0 || r > fRmax) return O;

return fFocalSurfShape->Eval(r);

Like in a class description block, EVERYTHING until the first non-commented line
is considered as a valid member function description block.

10

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-XXX-Y

E“sn ISSUE: 1.0
. REVISION: 1.0
: ESAF COdIng RU|eS DATE: 4th October 2004
PAGE 11/12

A Acknowledgements
B References

References

[1] D. De Marco and M. Pallavicini, Euso Simulation and Analysis Framework;
EUSO-SIM-ESAF-001-01, available on LiveLink

[2] The ROOT System http://root.cern.ch
[3] The ROOT User’s Guide http://root.cern.ch/root/doc/RootDoc.html

[4] Taligent’s Guide to Designing Programs Online version of the book, Taligent’s
Guide to Designing Programs: Well-Mannered Object-Oriented Design in C++;
Addison-Wesley.

C CreateNewClass script

CreateNewClass.pl is a perl script to create empty class files based on ESAF class
structure.

Usage: CreateNewClass.pl -n name [-s] [-u username] [-p parent]

-n The name of the class.

-s Create a singleton.

-u Include the author name in the class header.
-p Specify class parent if exists.

Each library is contained in a directory with two subdirectories, include and
src To add a new class to a library, go to the library directory and execute
CreatelNewClass.pl.

ClassName.hh and ClassName.cc will be created in include/ and src/ subdirec-
tories of the current directory. esaf/packages/tools

[ale]: CreateNewClass.pl

11

EUSO-SDA Subsystem

ESAF Coding Rules

DOC. REFERENCE:

ISSUE:
REVISION:
DATE:
PAGE

EUSO-SDA-REP-XXX-Y
1.0

1.0

4th October 2004

12/12

D CreateNewLib script

TO_DO

12

